Между порядком и хаосом. Часть 3

Джеймс П. Кратчфилд, Дж. Дойн Фармер, Норман Х. Паккард, Роберт С. Шоу3 ноября 2008

До недавнего времени были известны лишь перечисленные виды аттракторов: неподвижные точки, предельные точки, предельные циклы и торы. В 1963 г. Э. Лоренц из Массачусетского технологического института открыл конкретную систему низкой размерности со сложным поведением. Движимый желанием понять, в чем трудность с прогнозами погоды, он рассмотрел уравнения движения жидкости (они описывают и атмосферные течения) и путем упрощений получил систему ровно с тремя степенями свободы.

Тем не менее эта система вела себя случайным образом и не поддавалась адекватному описанию с помощью какого-нибудь из известных аттракторов. Обнаруженный Лоренцем аттрактор, называемый теперь его именем, стал первым примером хаотического, или странного, аттрактора.

Промоделировав свою простую систему на компьютере, Лоренц выявил основной механизм, который вызывал случайное поведение: микроскопические возмущения накапливаются и влияют на макроскопическое поведение. Две траектории с близкими начальными условиями экспоненциально расходятся в процессе эволюции, так что они проходят рядом лишь совсем недолго. В случае нехаотических аттракторов качественная картина совершенно другая. Для них близкие траектории так и остаются близкими, небольшие ошибки остаются ограниченными, и поведение предсказуемо.

Ключ к пониманию хаотического поведения дает простая процедура растягивания и образования складок в фазовом пространстве. Экспоненциальная расходимость — локальное явление: поскольку аттрактор имеет конечные размеры, две орбиты на хаотическом аттракторе не могут экспоненциально расходиться навсегда. Это означает, что такой аттрактор должен образовывать складки внутри самого себя. И хотя орбиты расходятся и следуют совершенно разными путями, в конце концов они должны пройти снова вблизи друг от друга. В результате орбиты на хаотическом аттракторе перемешиваются подобно тому, как перетасовываются карты в колоде. Случайность хаотических орбит есть результат этого процесса перемешивания. Вытягивание и образование складок происходит снова и снова, создавая складки внутри складок, и так до бесконечности. Иначе говоря, хаотический аттрактор является фракталом — объектом, в котором по мере увеличения выявляется все больше деталей (см. рисунок справа).

Хаос перемешивает орбиты в фазовом пространстве точно так же, как пекарь месит тесто для выпечки хлеба. Представить себе, что происходит с близлежащими траекториями на хаотическом аттракторе, поможет такой эксперимент. Добавим в тесто каплю синей пищевой краски. Вымешивание теста — это комбинация двух действий: его то раскатывают (при этом цветное пятно расширяется), то складывают. Поначалу пятно просто становится длиннее, затем образуются складки, и все это повторяется снова и снова. При ближайшем рассмотрении оказывается, что тесто состоит из многих слоев попеременно белого и голубого цвета. Уже через 20 шагов исходное пятно вытягивается более чем в 20 млн. раз по сравнению с начальной длиной, а его толщина сокращается до молекулярных размеров. Синяя краска полностью перемешалась с тестом. Хаос действует точно так же, только вместо теста он перемешивает фазовое пространство. Вдохновленный этой картиной, О. Ресслер из Тюбингенского университета построил простейший пример хаотического аттрактора в потоке (см. рисунок на странице 21).

При наблюдении физической системы из-за неизбежных ошибок измерения нельзя точно задать ее состояние. Одному состоянию отвечает не точка, а малая область в фазовом пространстве. Предельные размеры области устанавливает соотношение неопределенностей, но на деле различного рода шумы ухудшают точность измерений и способствуют появлению более заметных ошибок. Эта малая область аналогична синей капле в тесте.

Локализация системы в малой области фазового пространства, достигнутая путем измерения, дает определенное количества информации об этой системе. Чем точнее проведено измерение, тем больше знает наблюдатель о состоянии системы. И наоборот, чем больше область, тем меньше уверенности у наблюдателя. Поскольку в нехаотической системе близко расположенные точки остаются близкими в процессе эволюции, часть информации, полученной измерением, сохраняется во времени. Именно в этом смысле такие системы предсказуемы: начальное измерение содержит информацию, которой можно воспользоваться для прогноза будущего поведения. Иначе говоря, предсказуемые динамические системы не особенно чувствительны к ошибкам измерения.

Вытягивание и складывание хаотического аттрактора систематически устраняет начальную информацию и заменяет ее новой: при растяжении увеличиваются мелкомасштабные неопределенности, при складывании сближаются далеко отстоящие траектории и стирается крупномасштабная информация. Таким образом, хаотические аттракторы действуют как своего рода помпа, “подкачивающая” микроскопические флуктуации в макроскопическое проявление. Отсюда ясно, что никакого точного решения, никакого кратчайшего пути для прогноза будущего быть не может. Проходит совсем немного времени, и неопределенность, возникшая при начальном измерении, покрывает весь аттрактор, лишая нас возможности делать какие бы то ни было предсказания: между прошлым и будущим уже нет никакой причинной связи.

Хотя анализ, проведенный Голлубом и Суинни, подкреплял представление, что некоторые случайные движения в потоках жидкости связаны с хаотическими аттракторами, их работа ничего не доказывала. Хотелось иметь более явное свидетельство о наличии в полученных экспериментальных данных простого хаотического аттрактора. Обычно в эксперименте регистрируются не все характеристики системы, а только некоторые из них. Например, Голлуб и Суинни не могли полностью регистрировать течение Куэтта; они измеряли только скорость жидкости в одной точке. Задача исследователя — воспроизвести аттрактор при помощи неполных данных. Ясно, что это не всегда возможно: если аттрактор слишком сложный, что-то будет потеряно. Однако в отдельных случаях динамику можно восстановить на основе неполных данных.

Введенная нами методика, которой Такенс дал прочное математическое обоснование, позволяет воссоздать (“реконструировать”) фазовое пространство и искать хаотические аттракторы. Ее основная идея состоит в том, что эволюция всякой отдельной компоненты системы определяется другими компонентами, с которыми она взаимодействует. Таким образом, информация о таких компонентах неявно содержится в “истории” отдельной компоненты. Чтобы воссоздать “эквивалентное” фазовое пространство, мы берем просто одну компоненту и обращаемся с измеренными значениями при фиксированных запаздываниях (например, секунду назад, две секунды назад и т. д.) так, как будто это новые размерности.

Эти “запоздалые” значения можно рассматривать как новые координаты, задающие точку в многомерном фазовом пространстве. Повторяя процедуру с другими интервалами запаздывания, получаем много таких точек. Затем другими приемами можно проверить, лежат или не лежат эти точки на хаотическом аттракторе. Хотя такое представление во многих отношениях произвольно, оказалось, что оно сохраняет многие важные свойства аттрактора, которые, как выяснилось, не зависят от деталей реконструкции.

Для иллюстрации этой методики воспользуемся примером, который замечателен тем, что знаком и доступен почти каждому. Большинство людей осознают периодичность падения капель из подтекающего крана. Время между последовательными каплями может быть вполне регулярным, и не трудно угадать момент, когда упадет следующая капля. Менее известно поведение крана при несколько большей скорости течения. Часто удается найти такой режим, что капли, хотя и продолжают падать по одной, создают никогда не повторяющийся перестук подобно бесконечно изобретательному барабанщику. (Этот эксперимент легко выполнить самому; лучше воспользоваться краном без насадки.) Смены периодических и случайных режимов напоминают переход от ламинарного течения к турбулентному. Быть может, за этой случайностью скрывается простой хаотический аттрактор?

Один из авторов (Шоу) в сотрудничестве с П. Скоттом, С. Поупом и Ф. Мартейном проводил экспериментальное изучение подтекающего крана в Калифорнийском университете (Санта-Крус). В первоначальном эксперименте капли из Обычного крана падали на микрофон, и измерялись интервалы времени между звуковыми импульсами. Типичные результаты несколько более тонкого эксперимента проиллюстрированы рисунком на с. 25. Отложив на осях временные интервалы между последовательными парами капель, мы получим сечение соответствующего аттрактора. Например, в периодическом режиме мениск срывающихся капель изменяется гладким повторяющимся образом, чему соответствует предельный цикл в фазовом пространстве. Однако это гладкое изменение в реальном опыте недоступно измерению; регистрируются только интервалы между моментами, когда разбиваются отдельные капли. Это напоминает прерывистое освещение регулярного движения по петле. Если правильно подобрать время вспышек, движущийся предмет будет казаться застывшим в одной точке.

Эксперимент привел к впечатляющему результату: в непериодическом режиме подтекающего крана действительно были найдены хаотические аттракторы. Случайное поведение капель могло бы вызываться какими-то невидимыми воздействиями: небольшими вибрациями или воздушными потоками. Если бы это было так, то между последовательными интервалами не было бы никакой связи, и на графике получалось бы лишь некое бесформенное образование. Тот факт, что график имеет определенную структуру, уже сам по себе показывает, что случайность здесь имеет детерминированное основание. В частности, многие наборы данных приводят к подковообразной форме, что является признаком процесса растягивания и складывания, о котором говорилось выше. Эта характерная форма есть как бы “моментальный снимок” складки в процессе ее образования, например сечение на пути вокруг аттрактора Рёсслера, показанного на с. 21. Другие наборы данных выглядят более сложными; они могут оказаться сечениями многомерных аттракторов. Геометрия более чем трехмерных аттракторов в настоящее время почти неизвестна.

Если система хаотична, можно ли узнать, насколько она хаотична? Мерой хаоса служит “энтропия” движения, которая, грубо говоря, равна средней скорости растяжения и складывания или средней скорости, с которой “производится” информация. Другой статистической характеристикой служит “размерность” аттрактора. Поведение простой системы должно описываться в фазовом пространстве аттрактором малой размерности наподобие приведенных нами примеров. Чтобы задать состояние более сложной системы, может потребоваться несколько чисел, и в таком случае аттрактор может иметь более высокую размерность.

Методика реконструкции наряду с измерением энтропии и размерности позволяет по-новому исследовать течение, изученное Голлубом и Суинни. Такое исследование было выполнено сотрудниками из группы Суинни при участии двоих из нас (Кратчфилда и Фармера). Реконструкция позволила нам получить изображения соответствующего аттрактора. При этом такой же потрясающей картины аттрактора малой размерности, которая была получена при исследовании других систем, например подтекающего крана, получить не удалось. Однако измерения энтропии и размерности выявили, что нерогулярное движение жидкости вблизи перехода в течении Куэтта можно описать хаотическими аттракторами. Когда скорость вращения в ячейке Куэтта увеличивается, возрастают энтропия и размерность соответствующих аттракторов.

В последние несколько лет для многих систем со случайным поведением удалось найти простой хаотический аттрактор. Среди них — конвективное течение в жидкости, нагреваемой в небольшом сосуде, колебание концентрации веществ при химических реакциях с перемешиванием, сокращение клеток сердца цыпленка, а также колебательные процессы в большом числе электрических цепей и механических установок. Вдобавок тот же простой тип случайности был установлен для построенных при помощи компьютера моделей многих столь разнообразных явлений, как эпидемии, электрическая активность нервной клетки, пульсации звезд. Сейчас идут эксперименты с целью найти хаос даже в таких несхожих вещах, как рождение блестящей идеи и экономика.

Следует, однако, подчеркнуть, что теория хаоса ни в коей мере не панацея. Движения систем со многими степенями свободы сложны и имеют случайный характер, и, даже если известно, что некая данная система хаотична, сам по себе этот факт мало что проясняет. Хороший пример — сталкивающиеся друг с другом молекулы в газе. Хотя известно, что такая система хаотична, это нисколько не облегчает предсказание ее поведения. В движении участвует так много частиц, что можно надеяться лишь на статистическое описание, а основные статистические свойства выводятся без учета хаоса.

Существуют другие неисследованные вопросы, для которых роль хаоса неизвестна. Что можно сказать о постоянно меняющихся пространственно протяженных системах, таких, как дюны в Сахаре или достигшее полного развития турбулентное течение? Неясно, допускают ли сложные пространственно протяженные системы удобное описание при помощи одного аттрактора в одном фазовом пространстве. Однако опыт обращения с простейшими аттракторами, быть может, подскажет более разветвленную картину целых семейств пространственно мобильных детерминированных форм наподобие хаотических аттракторов.

Существование хаоса затрагивает сам научный метод. Классический способ проверки теории состоит в том, чтобы сделать предсказание и сверить его с экспериментальными данными. Но для хаотических явлений долгосрочный прогноз в принципе невозможен, и это следует принимать во внимание при оценке достоинств теории. Таким образом, проверка теории становится гораздо более тонкой процедурой, опирающейся больше на статистические и геометрические свойства, чем на подробное предсказание.

Хаос бросает новый вызов сторонникам редукционизма, которые считают, что для изучения системы ее ‘нужно разбить на части и изучать каждую часть. Эта точка зрения удерживалась в науке благодаря тому, что есть очень много систем, для которых поведение в целом действительно складывается из поведения частей. Однако хаос показывает нам, что система может иметь сложное поведение вследствие простого нелинейного взаимодействия всего нескольких компонент.

Эта проблема становится острой в широком диапазоне научных дисциплин, от описания микроскопических физических явлений и до моделирования макроскопического поведения биологических организмов. За последние годы сделан огромный шаг вперед в умении подробно разобраться, какова структура той или иной системы, однако способность объединять собранные сведения в цельную картину зашла в тупик из-за отсутствия подходящей общей концепции, в рамках которой можно было бы качественно описывать поведение. Например, располагая даже “годной схемой нервной системы какого-нибудь простого организма вроде нематоды, изученной С. Бреннером из Кэмбриджского университета, из нее нельзя вывести поведение этого организма. Точно так же необоснованна точка зрения, что физика исчерпывается выяснением природы фундаментальных физических сил и элементарных составляющих. Взаимодействие компонент в одном масштабе может вызывать сложное глобальное поведение в более крупном масштабе, которое в общем случае нельзя вывести из знаний поведения отдельных компонент.

Хаос часто рассматривают в свете налагаемых его существованием ограничений, таких, как отсутствие предсказуемости. Однако природа может пользоваться хаосом конструктивно. Через усиление малых флуктуаций она, возможно, открывает системам природы доступ к новизне. Быть может, жертва, ускользнувшая от хищника, чтобы не быть схваченной, воспользовалась хаотической регулировкой полета как элементом неожиданности. Биологическая эволюция требует генетической изменчивости, а хаос порождает случайные изменения структуры, открывая тем самым возможность поставить изменчивость под контроль эволюции.

Даже процесс интеллектуального прогресса зависит от появления новых идей и нахождения новых способов увязывать старые идеи. Врожденная творческая способность, быть может, скрывает за собой хаотический процесс, который селективно усиливает малые флуктуации и превращает их в макроскопические связанные состояния ума, которые мы ощущаем как мысли. Иногда это могут быть какие-то решения или то, что осознается как проявление воли. С этой точки зрения хаос предоставляет нам механизм для проявления свободной воли в мире, который управляется детерминированными законами.

Статья была впервые опубликована на сайте xaoc.ru 13 сентября 2005 г.

Источник: Кратчфилд Дж., Фармер Дж., Паккард Н., Шоу Р. Хаос. //В мире науки -1987,№2. — С.16 — 28.